Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611
AIASTE

Activity Sheet:
Title: Create a Maze Game with the BBC Micro:bit
Objective:

e Understand the concept of perception in Al by using the Micro:bit's accelerometer to control
a game character in a maze.

e Develop coding skills to create an interactive game.
Materials:

e BBC Micro:bit with USB cable.

e Computer with MakeCode coding environment installed.
Instructions:
Step 1: Introduction

e (Connect the Micro:bit to your computer via USB.

¢ Open the MakeCode coding environment in a web browser.
Step 2: Create a New Project

e Start a new MakeCode project for your maze game.
Step 3: Understand Perception

e Perception in AI involves sensing and understanding the environment. In this activity, you'll
use the Micro:bit's accelerometer to detect tilting motions, allowing the game character to
move within the maze.

Step 4: Design and customize Your Maze

In this step, you will design the maze using the grid provided in the MakeCode coding environment.
You can customize the maze by adding walls and open pathways to create a challenging puzzle. The
maze should have a clear start point and a destination, which is the end point of the game. Keep It
Challenging: Consider the difficulty level of your maze. The path from the start to the end should
present a challenge to the player. The player should navigate through the maze by tilting the Micro:bit
while avoiding walls to reach the destination.

Figure 1 LED grid using the block "show led" in MakeCode

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611
AIASTE

Create the maze layout using the grid provided in MakeCode. Use the block shapes to represent walls,
open pathways, the start (x = 0, y = 0), and the end (x = 1, y = 4) of the maze. Customize the layout
to match the provided maze or create your own maze design. You can also create more levels for the
player.

The complete set of coordinates x,y for the grid that micro:bit offers are presented in the table below.

Table 1 X, Y coordinates for micro:bit grid

00 (10 [(20) (B0 |40
01 |11 |21 |G |4y
02 |12 |2 G2 |42
03) |13 [@3) (B3 [43)
04 [(14 |24 1G4 |44

The player's location on the Micro:bit screen will be indicated by a flashing red LED. Solid red LEDs
will symbolize walls, while unlit LEDs will signify the maze pathways.

Coordinates are employed to manipulate the Micro:bit LEDs effectively! The x coordinates range from
0 on the left to 4 on the right, while the y coordinates range from 0 at the top to 4 at the bottom.
Consequently, the LED at the upper left is denoted as x=0, y=0, and correspondingly, the LED at the
bottom right is represented as x=4, y=4.

Step 5: Code the Game

Use the following blocks to program the game's behavior:

on start

play hello = until done =

set level + to o

set pameOn =+ to true =

set playerX * to e
playerY * to o

Figure 2 Beginning of program in MakeCode

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611

First, we need to create a few variables. Recall that variables function as containers that store
information. In this case, two variables are necessary to monitor the player's location. One is
designated to record the player's x position, while the other is dedicated to tracking the player's y
position.

Additionally, we require a variable to monitor the maze level, allowing for the possibility of multiple
levels. Another variable is necessary to track the game's status, indicating whether it is active or if it
has concluded.

The initial values are set to start at level 1, and gameOn is initialized as True. This is because, upon
powering on the Micro:bit, the intention is to commence the game immediately. While the starting
point for the player's location can be chosen arbitrarily, it needs to be recalled later when configuring
the maze level to ensure the player does not begin inside a wall. For this example, the player is
initiated at x=0 and y=0.

forever

if gameOn +

plot x playerX * vy playerY =

pause {(ms) WPLLER

®

Figure 3 First forever loop
Now that the initial variables are in place, let's ensure our player is displayed on the Micro:bit screen!

To achieve a distinctive blinking effect for the player, we'll employ the 'plot x y' block alternated with
the 'pause' block within a forever loop. The intention is for the player to continuously blink on and off.
When maze walls are introduced, the Micro:bit will overwrite the player each time it draws the walls.
By incorporating a pause block here, we ensure that the player won't be immediately re-plotted,
resulting in the desired blinking effect.

The utilization of the playerX and playerY variables created earlier is crucial. Why? If numerical values
were directly inputted here, it would limit the flexibility to make the player move. The use of variables
enables us to modify the values of playerX and playerY, allowing the forever loop to plot the player's
new location.

It's essential to note that the pause block operates in milliseconds (e.g., 200 ms = 0.2 seconds), and
the blinking speed can be customized by adjusting the duration of the pause.

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611

Now we need to setup the player's movements
forever (left, rights, up, and down). We will use the two
integrated buttons and the logo swipe function.

if is logo down * gesture then
We'll set the logo up gesture to maove up, the logo

down gesture to move down, the button A to move

lot 1 4 1 Y .
R Gy left, and the button B to move right.

change playerY *+ by e To accomplish this, we utilize if statements. These
statements assess whether a condition is true; if it

pause (ms) is, any blocks inside the if block are executed.
When we embed an if statement within a forever

@ loop, we continually check if the condition is true.
if iz logo up * gesture then For player movement, we modify the playerX or
playerY variables. It's crucial to remember that

unplot x playerX * y playery¥ = decreasing or increasing playerX causes left or
right movement, respectively, while decreasing or

change playerY * by o increasing playerY results in upward or downward

movement, respectively. Given that we consistently

plot the player's location using these variables, any
1000 -
pause (ms) - changes automatically reflect the player's new

@ position.

It's worth noting that a brief 300ms pause is
added after each button press. This prevents the
Micro:bit from moving the player across multiple
spaces rapidly with each button press, as the code

runs quickly without the pause.
change playerX * by e

e o
®

if button B * is pressed then

if button A * is pressed then

unplot x playerX *+ y playerY =

unplot x playerX * y playerY =

change playerX ¥ by o

—_-
®

Figure 4 Second forever loop

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611

n: firstly, displaying the maze

level -«

playerk » £ v a playery

gamedn * to

playery

playery

playery

playery

®
if playerk * =+ o playery

play happy * in background w

set playerd * tno
set playerY * to o

show icoan -

pause (ms) WEUIEER

®

Figure 5 Third forever loop

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611
AIASTE

walls on the LED screen; secondly, continually checking if the player collides with a wall (indicating
game over); and thirdly, perpetually assessing if the player successfully completes the maze level.

A forever loop is employed. Within this loop, an 'if' statement is used to verify if the level variable
equals 1. Consequently, this code segment will only execute when the level variable equals 1. If we
want to add more levels, then we should make sure that this variable changes accordingly.

Inside the 'if' statement, the maze walls are displayed using the 'show leds' block. LEDs are illuminated
to represent walls, while unlit LEDs denote the maze paths. Caution must be exercised to ensure that
the player's starting position, set earlier at x=0, y=0, does not coincide with a maze wall.

The subsequent task involves checking if the player collides with a wall. This is achieved through
additional 'if' statements, verifying if the playerX and playerY variables align with the coordinates of a
wall in the 5x5 LED grid.

Lastly, the code checks if the player successfully navigates through the maze. In this example, the
maze's end is at x=1, y=4. If these conditions are met, a successful melody plays, the player's position
is reset to the beginning of the maze, and a smiley face appears on the Micro:bit. If we have added
additional levels, then we also need to change the variable level by 1.

forever

if gameOn =

play sad = in background =

set level = to o

unplot x playerX * y playerY =

= [I |
show icon Lens_

set playerX * to o
set playerY = to o

set gameOn * to true =

®

Figure 6 Fourth forever loop

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Introducing the 5 Big Ideas in Artificial Intelligence using Internet of Things in STEM education
Project Number : 2022-1-FR01-KA220-SCH-000085611

A1 SmEm|

In case of a game over, we need to implement an action triggered by the 'gameOn’ variable indicating
a collision with a wall.

Within a forever loop, an 'if' statement is used to assess the value of the 'gameOn' variable. If it equals
'false,' the game over code is executed.

In this instance, a sad melody plays in the background, the 'level' is reset, the player LED is unlit, a
sad face is displayed, and the game starts from the beginning.

Step 6: Test Your Game
e Test your game by guiding the character through the maze. Does everything work correctly?
Step 7: Play and Share

e Share your maze game with others. Load it onto your Micro:bit and challenge your friends to
complete the maze.

This project allows students to experience the concept of perception in Al by using the Micro:bit's
accelerometer to control a character within a maze. Students can design their own mazes, create
different levels of difficulty, and share their games with peers for added fun and learning.

Co-funded by Funded by the European Union. Views and opinions expressed are however those of the author(s) only
the European Union and do not necessarily reflect those of the European Union or the European Education and Culture
Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

